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A FOUR-FLUID MODEL OF PWR DEGRADED CORES*

by -4

James F. Dearing
Safety Code Development Group

Los Alamos National Laboratory

1. INTRODUCTION

This paper describes the new two-dimensional. four-fluid fluid dynamics
and heat transfer (FLUIDS) module of the MELPROG[1] code. MELPROG is designed
to give an integrated, mechanistic treatment of pressurized water reactor (PWR)
core meltdowrn accidents from accident initiation to vessel melt-through. Tht
code has & modular data storapge and transfer structure. with each module
providing the others with boundary conditions at each computational time step.
Thus the FLUIDS module receives mass and eneryy source terms from the fuel pin
module. the structures module. and the debris bed module, and radiatior energy
source terms from the radraticn module.  MELPROG, whick models the reactor
vessel, is also designed yu model the vessel as a component in the TRAC/PI1[2]
networking solution of a PWR reactor coolant system (RCS).  The coupling between
TRAC and MELPROG is implicit in the fluid dynamics of the reactor coolant
(liquid water and steam), allowing an accurate simulation of the coupling
hetween the vessel and the rest of the RCS during an accident.  This paper will
deal spevifivally with the numerical model of flurd dypamics and heat transier
within the reactor vessel, which allows a much more realistic simulatyon (with
bews restrictive assumptions on phvsical behavior) of the acardent thar has beern

possible hetore,

‘Work performed under the auspices of the United States Nudlear Repuliatory

Commission, )
ﬂ'\ i)
“ l n :-| l‘m DISIRIBUTION BF HIS DOCUMINT 1S UNLIMTED



2. PHYSICAL BASIS FOR THE MODEL

The progression of an accident sequence ir a commercial PWR through core
meltdown involves the discrete motion of at least four differgét classes of
materials. First, tne motion of liquid water through the core determines the
amount of heat removed and the rate of propression of the initial stages of the
accident. Sccond. steam generated by bo‘ling in the core tends to separate from
the liquid. accumulating ir the higher regions of the primary system. The
relative distributiorn of steum and liguid watir in the core is critical to
determining core coolability. Third, oxidized and embrittled fuel pins can
shatter. forming packed debris beds supported by the lower core support
structure. And fourth, fuel pins, structure and debris beds can melt,
redistributing material to the lower plenum. Gravity will always tend to
sepurate these four material classes. A truly mechanistic model (one that does
not rely on assumptions of gross phenomenology) must track the distribution,
velocity and temperature of each of these material classes separately. Thisx 1s
done here by treating each of the four classes with continuum mechanivs. and so
is termed o "four-fluid” model.

These four fluids must also be tracked in at least two dimensions. Heat
generation tends to be greater near the center (radially) ol the vessel. while
heat loss to structures terds 1o be greater near the edge, Tnitial core
deformation will tend to occur near the center, which will decrease convec!ive
enerpv removal near the center and 1ncrease it further out, Mass  (most
importantly, fission products) and energy transport by natural convectien cells
which couple the core to the upper plenum and possibly upper head may be crucial
to determining the outcome of an accident sequence. A lwo-dimensional model s
tlcarly necessary to sanulate these phenomena. A three-dimensional model. which

could alse properly locate the hot and cold lep nozzles (these Jocations are
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asymmetrical in two dimensions), would be preferable, but the added expense ard
complicatior the extra dimension would entail are not considered justified
presentlyv. -4

The purpose of the fluids module of MLLPROG, then. is to predict the
distribution, velocity 4and temperature of the four material classes or "fluids”
described above in a two-dimensional representation of a PWR vessel during an
accident sequence. The model relies heavily on the TRAC code development
effort. both for basic numerical methods and for actual cnding that calculates

equation ol state and exchanpe terms for liquid water and steam.

3. BASIC EQUATIONS

The problem described above requires the simultaneous solution of the
conservation equations of mass, axial momentum. radial momentum, and energy for
each ol the four fluids. The gas is mode!ed 15 a mixture of steam and hydrogen,
so an additional hvdroger mass conservatior equation is required. The four
fluids are identified in the following equatiors by the index [. which iy
defined 1r Table I,

The differential forms of the equations will be Tisted and discussed., The
finite difference forms will be piven as part of the description of the solution
algorithm that follows. The mass conservation equations have the following [orm
for fluid 1

2 -
3 (Orpr) + VvV ("fpf\f) -

-

I - ry =0, (1)

ay is the volume fraction of fluid { with respect to the total geometric

cell volume (not flow volume ). The nor-1low volume fraction an the cell  (nade
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TABLE 1

Material

gas mixture of steam and hydrogen
liquid water
solid corium

molten corium
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up of fuel pirs and other vessel structural material) is designated o This

G"

formulation is required because o, car change with time as core structures
deform and fall to Jlower regions of the vessel. This movcmcnt-4f structural
material is accomplished by transferring the structure mass and energy into the
third or fourth [luid. depending on whether it is melten or not.

The third and fourth terms represent mass transfer among the fluids and
external mass source terms. respectively. The mass transfer between :%‘eam and
liquid water is treated im, licitly in temperature and pressure, while the other
mass transfers are treated explicitly.

The hydrogen mass conservation equation is

a -
31 (alph) + V- (alphV,) - =0, (2)

The external mass source term [y is produced by burning of the Zircalloy
fuel pin cladding.

The axial momentum equations have the following form lor fluid f

¢ - o . LI
— V. + V., ¢« ¥V VZ, + — —
9, { ! Y
3 \'V v v v

+ ———— CFZyy (V. - V4, )IVL. - VL0

(aP); k=1 kt 1 k'YE k

1 s . )
=" (WL VALV + g =0 (3)

The fourth term represents momentum transfer among the fluids, while the
I.fth term represents wall friction. Coetficients 1/ and (WZ are evaluaired

explicity on the basis of local [low regime.  The radral momentum equations are



-6-
completely analogous to equations (3). with the exception of gravitational

acceleration

- y -
Z VR o+ VT VR o+ - ar
at [ f Pr By

1 L 1
—_— : - | - VR, !

FWRr VRflVRrI = 0. (4

The energy equations are given by

2 - aa'- -
T (arpfur) + Vv (arprurvr) + P(?ﬁ— + V. aer)

k

ir 1=

(‘lkl - Ul- = 0 . (s

4
Fvr heo i
1 kDTS gy

The third term is the work term. The fourth term represents energy
exchanpe between the f{Juids due to phase chanpe with hg representing the
saturation enthalpv of fluid f. The I'ifth term represents heat transier between
the I'luids. The sixth terw represents external epergy sources provided by other

modules of MLELPROG.

Firally, & constraint or the sum of the [{luid wvolume fractions is

required:

1 - L\l- - a = { (6)

Lquatiens (1) throuph (5) are a set of seventeen coupled, non-linear,
partial ditferential equations that, alonp with material equations of state and
relatrons lor mass. encrpy and momentun: exchange. provide the basis lor o«

solution of the problem.  The description of the solutien alporithm that [ollows
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assumes that all four fluids are in fact present throughout the reactor vessel.
Fortunately this is rarely true., sc that a significant reductiorn ir the
complexity of the problem is usually possible. The steps taken t&;kaximizc this

reduction in complexity will be described later.

4. SOLUTION ALGORITHM

The algorithm used to solve this equation set is based orn the Stability
Enhancirg Two-Step (SETS)[3] method. which is used to solve the one-dimensiornal.
two-{luid problem in TRAC/PF1. SETS has enhanced numerical stability
characteristics that allow the material Courant condition to be exceeded urnder
some conditions. resulting in Jonger computational time steps and a less
expensive calculation., Compared to the usual semi-implicit method (leor example.,
as used irn the TRAC/PF1 three-dimensional vessel component). SETS also has
enhanced stability characteristics for problems with phase change. because of a
more impiicit treutment of momentum coupliry betweer the fluids and of the
partitior of volume fractior within a cell, The algorithm was developed partly
from the previous one-dimensional. three-fluid FLUIDS module of MIMAS[4]. which
also utilized SETS. The algorithm consists of three main parts - the momentum
equation solver, the basic step, and the mass and enerpy stabilizers. These
parts are described in detail. followed by a discussion of the treatment ol low
volume fractions.

A, Momentum LEgquations

The wusual fluid-dynamics staggered grid[5] 1s used for the spacial
Finite-differencing of the differential equations. Ir this scheme. pressures.
volume fractions, and fluid state variables are evaluated using cell-centercd
(i) vontrol volumes. while velocities are evaluated using cell-edpe centered

control volumes.  Thus all the terms 1n the axial mocenfum equalions (3) are
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evaluated using control volumes centsred at (i,j+1/2) and all the terms ir the

radial momentum equations (4) using cortrol volumes centered at (i+1/2,)).

Terms ir equations (3) requiring further finite difference Wxpansior are

the following:

- . y ']
i vzi‘j+% [ve], VR; [vz],
(V « ¢ VZ)l ]+l = 1 + 1 t (7)
Vs .
21 _ - _ - <o -
where [VZJZ = Vli‘j+% \Zi.j—; if Vli‘j+% 20
= V¢, ]+11 - Vi, [ vz, ]+1 < 0 (8)
2 2 2
2 2 2
= V4, _H_-vzl“h i1 VRi".‘+%<(> (9)
) \
(VRigl i+ VRi+%.j+1 VRLL R e
= - : (10)
where VRi.i+l - ]
T2
1 ap 1 Py a1 - Piy)
(— =), 41 : : (11)
P 3l )*s 1 v Yoar AZt )
“ 0Py * PiL ) U84y ALy,



1 2
[(aP)j.j + (aPiy iy g

Analogous expressions are used for terms in the radial momentur. equations
(4). These spacial [irite difference forms will not be repeated so that the
following equations can clearly show the different temporal differencing uand
linearizatior schemes.

The goal in this step is to reduce equations (3) and (4) into simple

linear relationships between each Jocal fluid wvelocity and aun associated

pressure gradient. This can be done easily by evaluating all the terms except
the nor-steadv term using old-time Jlevel wvelocities. but this fully explicit
techrique has Jlimited stability characteristics. A fully implicit, iterative
solution is also possible. but very expensive. SETS provides an intermediate
method. in which successive linearizations provide separate implicit solutions
for the major couplings - among the {Juid wvelocities ir each c¢ell and
convectivelv between cells lor each {luid.

The solutiorn procvedure for the axial momentum equations will be discussed.
with ar analogous procedur: used lor the radial momentum equations. In the
first linearizationr old-time level velocities are used 1n the conveclive terms,

decoupling the equations spatially.

vZpitl o oven - n
! Low vEevvgsn 4 L 2D
At ph e/
n
1 - cyph+1 opn+1 N N 0 4N
+ CPZp o 12evep™ - vZpp™hy - vep - VDO P rovep - v

(am)t k=1
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+ —1_owz; (2vzP?*1 - vz 4 g = 0. (13)
n f f f :
(aP)f
Equations (13) represent a 4x4 system of equations in vzP™T at cach mesh
cell, which are solved directly. These wvelocities are called predictor

velocities. and represeni the effect of coupling betweern the fluids within each
cell. The third and fourth terms in (13) represert tempora! exparsions of the
analagous terms ir (3) (see Ref. 3). The second linearization uses the
predictor velocities for the intra-cell fluid irteractior terms (decoupling the

fluid equations from each other). while solvirng for the convective terms.

vzsitl o yyn - .
' — . vE . ovovgsptt o 12D

+ D CFZp 120vzPRHl L vepT*hy vt - v vzl - ovzp
(aP)F k=1
+ L owzpvaett! S va v 4y = 0 (14)
(aP)F
Equatiors (14) represent four uncoupled systems of equations in vzshtl
which are solved iteratively. These wvelocities are «called stabilizer

velocities. and represent the eflects of coupling between cells. The third
linearization uses stabilizer wvelocities for the convect ve terms. with rnew

time-leve]l pressures.



-11-

vzi*l o oyyr - 1
- Loooviopwzemt! 4 L a{z ]
oy € 4
1 t - n+1 -n+1 T -n T N
+ : Crzkr {2(sz - Vlk ) - (VZf - VZ )]ler = VZkl
(ap)? =
+ . CWZp (VZETY - Ve IVER 4 g = 0 (15)
(aP)y
f

LEquations (15) also represents u 4x4 system in velocities at each mesh

cell, but these svstems are solved with the new time level pressures factored

out or. the right-hand sides to give eqguations of the lorm

vzl , n+1 n+1 .
Coddgdp =z gady + 02 gy PG e - PO

(16)

Equatiorn (16) 1s the required relationship betweer new time-level
pressures and velocities,  The linear coefflicients az and bz are held constant
duriny the next step. An analopous procedure for the radial momentum equations

vields a similar equation set for the radial velocities,

vri+ly , n+1 n+1
G =argigd ool gy (00T - PRy ()

<

B.  Basic Step

All terms an the mass and energy cquations (1), (2) and (85) are evaluated
using contrel volumes at cell centers (1.j). Terms 1n these equalions requiring

Turther tanite ditterence expansion Lol low,



n+l n+1 n

0 .

where ARF is calculated in the mass stabilizer step of the previous time step.

n+l ,n+1 _ n+1 n
2 lapeus) = o A A (19)
at 1T At '

where ARUF is calculated in the energv stabilizer step of the previous time
stiep.
-
The secord term in equations (1). (2). and (5) has the form v +(YV) and

is evaluated as

-
- = (FZ. .,] 2072 P TN 7N IR ' V2 TR
VoY) (lz(,‘J+5) [\.vzj(l.1+5, .z,,_j_s, 1\.\11(,‘J-5)
] - BEEY ) ! _ . i )
OURCGLL VYRG0 PRGLL G IYVR G YOG (2o
2 3 2 2

-

where I'Z and FR represent axial and radial f'low areas. respectively. and

Y .
)
[Y.VZ] 1. o= ey 1 VL, ]
. 1 (..J+5) (1-a,), <I-J+5) (1.1+5) >0
Yy j+1) S
= -V 1 o - i)
(l"(l,’.){i |+1) [(l\|+.—") ll v,(l.“";) < (i

Similar upwind difterence forms hold for the other terms 1n equation (2070,
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For the mass conservation equatiors (1) and (2). ). j ‘s piven by

] , . y .
o™ Pt The neighboring cell Y s are giver by stabilized mass densities

(AR), which are calculated in the mass stubilizer step of the previous time

step. Similarly, for the energy conservation equations (5), Y, j is given by

an+1pn+1un+]. but the neighbering cell Y's are given by stabilized energy
densities (ARU), which are calculated in the energy stabilizer step of the
previous time step. Using different time ltevel values in the convection terms
is nonconservative, but conservaticn is maintained by the mass and energy
stabilizer steps. Using new time-level values of aP ond ePu in the convection
terms increases stability, while using old-time level values for the neighbnring
celis reduces the spatiz]l coupling of the system ol equations that must be
solved (they are still coupled by pressures).
The work term in equation (8) is piven by
n+l “F

P . SNt
M { ]

where the convection term 1s upwind-differenced as an equation (20),

Equations (16) and (17) are used to eliminate veiocities in equations (1),
(2). and (S).  Equations (1), (2). (8). and (6) now constitute a set of 10
cquations for each mesh cell.  With material cquations of state used 1o ypive
internal enerpy und derxi‘y an terms of pressure and temperature. these 10
equations  are  lunctions of  the pressure freld (cell and neighboring cell
pressures), «cell partial pressuie of hvdregen, and cell wvalues of  volume

fraction and temprratures for each of the four fluids,
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These systems are solved by Newton iteration using the following procedure
(which was developed for the two-fluid svstems of TRAC/PF1). Va{jations in the
10 equaiions with respect to cell pressure are divided into those caused by
density changes and those caused by velocity changes. The Jacobian matrix is
partitioned so thut variations with respect to cell variables are included on
the lelt hand side of equation (22), while var,ations with respect to

nejghvoring cell pressures and the terms for variation of velocity with respect

to cell pressure are included on the right hand side.

- -
A bx = -B. &P . . o -
PGy - By 8Py )y - By 8Py )
-, -» -»
By 8P(, o1y - Bs 8P, iy, S . (22)

where A is the 10 « 10 Jacebian matrix

Eﬂl aM, BM] aM‘ aMl Eﬂl
ol da, an 4 T, 814 ak,

aM

(P
I
-

oAl LA

h]
ap ar (24
h
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where the M, represent equation (1) (i=1 to 4) and equation (2) (i=5). The L,

represent equatior (5) (i=1 to 4), AL represents equation (6). and

-»
bx = (8P, day, **', buy, T, ++v, 8T,. &F,) . (24)
] = v L] sy Sn - ~
avi_i apl‘j avi i BPl‘ BPi_
-
Som (My. sory Mgy seey B oo, Bge sovu ALD L (26)

-
and A and § are evaluated using previous 1terate values for the 10 independent
[y
variables, and § represents the residuals of the 10 equations.  Forms similar to
-
cquation (25) exist for the other B in equation (223, Lquation (22) is solved

[y
for 6x directly,

-

bx = A B, sp - AR, 6P AV B, ap,
2 1 %Y A B i a 30 e

-

- ] .
-1 - oAt s (27)
AT By APy

The irst row of equation (27) s an amphicit relationship between cell
pressure vartations and neighboring cell pressurc variations.  When the first
rows ol equations (27) are collected tor all the mesh cells, an implicit system
of equations for corrections to the pressure field results, which s solved
iteratively,  These pressure corrections are then substituted back into equation

-
(27) tor cach mesh cell to prve the rest of AN, These corrections ate then
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applied to pressures, hydrogen partial pressures. and the four fluid vnlume
fractions and temperatures. Equations (16) and (17) are used to wupdate
velocities. If the maximum pressuve correctiorn is greater than a specified

convergence criteriorn, another Newton iteration is performed.

C. Mass and Energv Stabilizers

Equations (1). (2) and (5) arc converted to the following forms,

respectively

AR?+] - AR? +] - +1 A

——r— + v (ARTT! vRTh) - V51 Myg - Tp = 0 (28)
ARD*T . aRT R

—— ¢ v (ARE+ v?* ) - T, = 0, and (29)

ARUF*’ - ARUT
A

#1 yn+l
+ T o (ARUTTD vRED
R pn+| ‘ +4 % b Gnl] _ r ] - T - 0 (30)
B (Vi =y Tk Par 2y Yk Ugp=0. L

where all paramcters are set using the new values determined in the basic step
These equatioans are solved for AR and ARUPHD for cach Fluid and for hydrogen.

These  parameters  provide  stabilized mass  and  enerpy densities for  the

reighboring cell convective terms in the next time step.
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D. Tr=atment of Low Volume Fractions

A lower Jlimit is set on volume fractions that uare calculated by the
|

algorithm. This limit is provided as part of the code input, and ?s usually set
to 10'5. If the volume fraction of a piven {luid ir a given cell, as determined
by the mass stabilizer equations (27) and (28), is less than this lower limit,
then the equation set is adjusted as though the f{luid did not exist in that
cell. This adjustment varies depending on the specific equation.

The spatially decoupled momentum equations (13) and (15) at a given cell
interface are adjusted if the given fluid does not exist in bhoth cells bordering
the cell interface. This adjustment consists of lixing the linear coefficients
to produce the required velocity. ! The momentum stabilizer equations (14) and
the energy stabilizer equations (30) are not solved for a giver fluid if that
fluid does not exist anvwhere in the vessel. The mass stabilizer equations (28)
and (29) must be solved, becuause these equations determine whether a fluid has
entered or left a pgiver cell bhecause of convection ¢r source terins.

The most important adjustments are to equatiors (22). When a fluid is not
present irn u cell, the mass and energy conservation equations for that luid can
be removed 'rom the equation set that make up equation (21), reducing the size
of the system thal must be solved. Thus the size of the matrix A can range from
10x10 (Four I'luids plus hyvdrogen) to 2x2 (one fluid). The number of operations
required to solve equation (22) directlv is proportional to the dimension of A
cubed, so this procedure can result in a maximum reduction of a factor of 125 an
the number of operations required. This procedure is effective in reducing
overall computation time because most cells in a reactor vessel often contain

only a single fluid during a typical accident sequence.
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5. SUMMARY

An efficient algorithm for the mechanistic solution of in-vessel [luid
dynamics and heat transfer during a core disruptive accident has géLn described.
The algorithm allows discrete interpenetrating motion of fou} classes of
materials. Structural materials can relocate to other regions of the vessel,
displacing and interacting with other fluids (for example, by energetic fuel
coolant irteractions). This algorithm represents a significant extension of the
well-provern SETS method. The new FLUIDS module of MELPROG has undergone testing
in both stand-alone and coupled form against both experimental data and results
of other codes. 1t will soor be used to pive a fully integrated simulation of
the important phenomena that occur during high-consequence PWR accident

segquences.
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NOMENCLATURE

volume fraction

macroscopic mass density (stabilized)
macroscopic energy density (stabilized)
coefficients in linearized axial momentum equations
coefficients in linearized radial momentum equations
inter-fluid and wall axial friction factors
inter-fluid and wall radial fraction factors
axial flow area

radial flow area

gravitational acceleration

enthalpy

axial node index

radial node index

pressure

volumetric heat exchanpe rate

radial direction

time

temperature

internal enerpy

two-component velotity veetor

axial velocity

radral velocity

axial and radial predictor velocities

axial and radial stabilrzer velocities

tell peometric volume
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arial direction
microscopic density

volumetric mass excharpe rate
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